Laminar Boundary Layers
Lamina—A thin scale or sheet. A layer or coat lying over another.
18.1 Introduction
Within the panoply of boundary-layer analyses, the solution of laminar boundary layers is well in hand compared to the status for turbulent boundary layers. This chapter is exclusively devoted to laminar boundary layers; turbulent boundary layers is the subject of Chapter 19. The basic definitions of laminar and turbulent flows are discussed in Section 15.1, and some characteristics of these flows are illustrated in Figures 15.5 and 15.6; it is recommended that you review that material before progressing further.
The roadmap for this chapter is given in Figure 18.1. We will first deal with some well-established classical solutions that come under the heading of self-similar solutions, a term that is defined in Section 18.2. In this regard, we will deal with both incompressible and compressible flows over a flat plate, as noted on the left side of our roadmap in Figure 18.1. We will also discuss the boundary-layer solution in the region surrounding the stagnation point on a blunt-nosed body, because this solution gives us important information on aerodynamic heating at the stagnation point—vital information for high-speed flight vehicles. As part of the classical solution of compressible boundary layers, we will discuss the reference temperature method—a very useful engineering calculation that makes use of classical incompressible boundary – layer results to predict skin friction and aerodynamic heating for a compressible flow. Then we will move to the right side of the roadmap in Figure 18.1 and discuss some
more modern computational fluid dynamic solutions to laminar boundary layers. Unlike the classical self-similar solutions, which are limited to a few (albeit important) applications such as flat plates and the stagnation region, these CFD numerical solutions deal with the laminar boundary layer over bodies of arbitrary shapes.
Note: As we progress through this chapter, we will encounter ideas and results that are already familiar to us from our discussion of Couette flow in Chapter 16. Indeed, this is one of the primary reasons for Chapter 16—to introduce these concepts within the context of a relatively straightforward flow problem before dealing with the more intricate boundary-layer solutions.