. THE FLEXIBLE MODEL
A complete model of the aircraft is obtained by adding its rigid and flexible models at the outputs (see Figure 2.2). A real modal state – space representation of the flexible part is given in appendix A. The corresponding flexible modes are:
Eigenvalue |
Damping |
Freq. (rad/s) |
||
-2.42Є-01 |
+ |
7.34e+00i |
3.29Є-02 |
7.35Є+00 |
-2.42Є-01 |
– |
7.34e+00i |
3.29е-02 |
7.35е+00 |
-4.39e-01 |
+ |
8.бІе+ООі |
5.09е-02 |
8.62е+00 |
-4.39e-01 |
– |
8.бІе+ООі |
5.09Є-02 |
8.62е+00 |
-З. ОЗе-01 |
+ |
1.25е+01і |
2.42е-02 |
1.25е+01 |
-З. ОЗе-01 |
– |
1.25е+01і |
2.42е-02 |
1.25Є+01 |
-2.93Є-01 |
+ |
1.35е+01і |
2.1бе-02 |
1.35Є+01 |
-2.93Є-01 |
– |
1.35е+01і |
2.16Є-02 |
1.35Є+01 |
-7.15e-01 |
+ |
1.4ІЄ+01І |
5.07е-02 |
1.4ІЄ+01 |
-7.15е-01 |
– |
1.4ІЄ+01І |
5.07Є-02 |
1.4ІЄ+01 |
-2.24e-01 |
+ |
1.43е+01і |
І. Ббе-02 |
1.43Є+01 |
-2.24Є-01 |
– |
1.43е+01і |
1.56е-02 |
1.43Є+01 |
In chapter 4, uncertainties in the natural frequencies of the bending modes above will be introduced in the aircraft model.