CONTROL FORCES

The requirements invariably specify limits on the control forces that must be exerted by the pilot in order to effect specific changes from a given trimmed condition, or to maintain the trim speed following a sudden change in configuration or throttle set­ting. They frequently also include requirements on the control forces in pull-up ma­neuvers (see “control force per g,” Sec. 3.1). In the case of light aircraft, the control forces can result directly from mechanical linkages between the aerodynamic control surfaces and the pilot’s flight controls. In this case the hinge moments of Sec. 2.5 play a direct role in generating these forces. In heavy aircraft, systems such as partial or total hydraulic boost are used to counteract the aerodynamic hinge moments and a related or independent subsystem is used to create the control forces on the pilot’s flight controls.

STATIC STABILITY

The requirement for static longitudinal stability (see Chap. 2) is usually stated in terms of the neutral point. The neutral point, defined more precisely in Sec. 2.3, is a special location of the center of gravity (CG) of the airplane. In a limited sense it is the boundary between stable and unstable CG positions. It is usually required that the relevant neutral point (stick free or stick fixed) shall lie some distance (e. g., 5% of the mean aerodynamic chord) behind the most aft position of the CG. This ensures that the airplane will tend to fly at a constant speed and angle of attack as long as the controls are not moved.

The requirement on static lateral stability is usually mild. It is simply that the spiral mode (see Chap. 6) if divergent shall have a time to double greater than some stated minimum (e. g., 4s).