Airworthiness Requirements
From the days of barnstorming and stunt-flying in the 1910s, it became obvious that commercial interests had the potential to short-circuit safety considerations. Government agencies quickly stepped in to safeguard people’s security and safety without deliberately harming commercial interests. Safety standards were developed through multilateral discussions, which continue even today. Western countries developed and published thorough and systematic rules – these are in the public domain (see relevant Web sites). In civil applications, they are FAR for the United States [8] and CS (EASA) for Europe. They are quite similar and may eventually merge into one agency. The author’s preference is to work with the established FAR; pertinent FARs are cited when used in the text and examples. FAR documentation for certification has branched out into many specialist categories, as shown in Table 2.3.
Table 2.4 provides definitions for general, normal, and transport categories of aviation.
Table 2.4. Aircraft categories
Note: MTOW = maximum takeoff weight PAX = passengers |
In military applications, the standards are Milspecs (U. S.) and Defense Standard 970 (previously AvP 970) (U. K.); they are different in some places.
Since 2004, in the United States, new sets of airworthiness requirements came into force for light-aircraft (LA) designs and have eased certification procedures and litigation laws, rejuvenating the industry in the sector. Europe also has a similar approach but its regulations differ to an extent. Small/light aircraft and microlight types have different certification standards not discussed in this book.