APPLICATIONS OF THE /x TOOLS
The aim of this chapter is to evaluate the applicability of the computational methods, which were presented in the previous chapter. See (Ferreres et al., 1996a) for a related work in the context of a single-axis and three-axes missile autopilot. See also chapter 5 (section 4.) for a summary of the computational methods.
The first section evaluates the robust stability and performance properties of the longitudinal missile autopilot, robust performance being defined either as robust pole location inside a truncated sector, or as robust shaping of the sensitivity function. The lateral flight control system is analyzed in the same way in the second section. Since this controller was synthesized with a modal approach, robust performance is defined in this context as robust pole location inside a truncated sector.
1. THE MISSILE AUTOPILOT
The aim of this section is to analyze the local stability and performance properties of the #oo autopilot in the presence of parametric uncertainties in the 4 stability derivatives Ma , Ms, Za, Z$. The high frequency bending mode is not taken into account (see chapter 9), so that the model perturbation only contains 4 non repeated real scalars. The weights in the stability derivatives are chosen as 5 %. See chapters 2 (subsection 2.2) and 4 (section 1.) for details concerning the description of the linearized missile model and the building of the interconnection structure.