METHODS

In the previous chapters the solution to the potential flow problem was obtained by analytical techniques. These techniques (except in Chapter 6) were applicable only after some major geometrical simplifications in the boundary conditions were made. In most of these cases the geometry was approximated by flat, zero-thickness surfaces and for additional simplicity the boundary conditions were transferred, too, to these simplified surfaces (e. g., at z = 0).

The application of numerical techniques allows the treatment of more realistic geometries, and the fulfillment of the boundary conditions on the actual surface. In this chapter the methodology of some numerical solutions will be examined and applied to various problems. The methods presented here are based on the surface distribution of singularity elements, which is a logical extension of the analytical methods presented in the earlier chapters. Since the solution is now reduced to finding the strength of the singularity elements distributed on the body’s surface this approach seems to be more economical, from the computational point of view, than methods that solve for the flowfield in the whole fluid volume (e. g., finite-difference methods). Of course this comparison holds for inviscid incompressible flows only, whereas numerical methods such as finite-difference methods were basically developed to solve the more complex flowfields where compressibility and viscous effects are not negligible.