Condition on Velocity for Incompressible Flow

Consulting our chapter road map in Figure 3.4, we have completed the left branch dealing with Bernoulli’s equation. We now begin a more general consideration of incompressible flow, given by the center branch in Figure 3.4. However, before intro­ducing Laplace’s equation, it is important to establish a basic condition on velocity in an incompressible flow, as follows.

First, consider the physical definition of incompressible flow, namely, p = con­stant. Since p is the mass per unit volume and p is constant, then a fluid element of fixed mass moving through an incompressible flow field must also have a fixed, con­stant volume. Recall Equation (2.32), which shows that V • V is physically the time rate of change of the volume of a moving fluid element per unit volume. However, for an incompressible flow, we have just stated that the volume of a fluid element is constant [e. g., in Equation (2.32), D(SV)/Dt = 0]. Therefore, for an incompressible flow,

Подпись: V • V = 0[3.39]

The fact that the divergence of velocity is zero for an incompressible flow can also be shown directly from the continuity equation, Equation (2.52):

Condition on Velocity for Incompressible Flow

[2.52]

 

For incompressible flow, p = constant. Hence, dp/dt = 0 and V • (pV) = pV ■ V.

Equation (2.52) then becomes

O + pV • V = 0

or V • V = 0

which is precisely Equation (3.39).