Cruise climb
As the flight proceeds fuel is used and the aircraft weight changes. This change may be very significant; up to half the total weight on a long-range transport aircraft. Thus the lift will decrease. In order to operate at the best lift coefficient we therefore need to reduce the dynamic pressure. If the aircraft is powered by a gas turbine we do not wish to reduce speed, or the engine efficiency will suffer. The only alternative to reducing the speed is to reduce the air density by climbing as the flight proceeds. Fortunately this is possible even if we are operating near the limiting height described in the previous paragraph. As the weight of the aircraft reduces, so this limiting height increases (Fig. 7.8) and we can achieve the desired increase in altitude without being squeezed into ‘coffin corner’, the point where stall and high speed buffet occur at the same speed. This technique is known as ‘cruise climb’.
OTHER TYPES OF POWERPLANT 201
Some practical considerations
In practice, other considerations may influence the way in which the cruising height is selected and the way in which the cruise climb technique is operated.
In the first place, we must remember that the cruise is only part of the flight. The aircraft must both land and take off, and the flight plan must be optimised over all phases as a whole, not just during cruise. Thus for short journeys the cruising height is likely to be lower than for long-range flights.
As far as the cruise climb is concerned, factors such as Air Traffic Control requirements do not enable the technique to be followed as closely as the pilot would like. For example, in order to achieve safe separation of aircraft the height may be dictated by safety rather than economy, and airline pilots have to get permission from Air Traffic Control before changing height.