Flying down the glide path
The above description perhaps gives a deceptively simple view of the landing procedure. Flying an accurate approach is a very demanding exercise and there is more than one way of going about it, the choice being determined by the aircraft type and pilot preference. The term ‘glide path’ for this part of the landing is somewhat misleading. It is perfectly possible to fly this part of the approach with the engine idling and this was a popular method some years ago.
With a gas-turbine engine in particular, the safer method is to fly down the glide path using a significant amount of power with the aircraft flaps being
used to provide a high drag setting. This procedure gives better control. The throttle setting can be decreased as well as increased, the latter being the only option available in the true gliding approach. Even more important is the fact that a gas turbine engine is very slow to pick up from idling speed when the throttle is suddenly opened. It is therefore a safer procedure to fly the approach under power to facilitate recovery from an aborted landing. The improved control afforded by this procedure has, however, led to its wide adoption even for light piston-engined aircraft.
Assuming that the pilot has broadly got the aircraft set up at the correct angle of attack and throttle setting to follow the required glide path, there will inevitably be small corrections needed from time to time. Here again the pilot has some choice in the matter. Provided the aircraft is not dangerously near the stall, such corrections can be made by controlling the aircraft angle of attack by elevator movement. This will result in some change in speed as well as glide angle. The alternative is to change the throttle setting and for piston-engined aircraft this method is frequently preferred because of the smaller change in speed. For jet aircraft and especially large ones, the former method is frequently used. This is because of the slow response of the engine, which makes accurate correction difficult. Further, if the aircraft is heavy, it will take a long time for the speed to change, which minimises the main disadvantage of the method.
When flying down the glide path the pilot must have some means of checking that he is flying to the correct glide slope. Nowadays a variety of aids are available, and some of these are discussed below. In the absence of more complex aids he will need some reference markers, which may be simple radio beacons, at known distances from the runway threshold. He can check the height on the altimeter on passing these markers and estimate the required descent rate appropriate to the speed of the aircraft. In order to help to the correct descent rate the aircraft is fitted with a Vertical Speed Indicator (VSI) which works by sensing the rate of change of atmospheric pressure as the aircraft descends.