Introduction то the Fundamental Principles and Equations of Viscous Flow
I do not see then, I admit, how one can explain the resistance of fluids by the theory in a satisfactory manner. It seems to me on the contrary that this theory, dealt with and studied with profound attention gives, at least in most cases, resistance absolutely zero: a singular paradox which I leave to geometricians to explain.
Jean LeRond d’Alembert, 1768
15.1 Introduction
In the above quotation, the “theory” referred to by d’Alembert is inviscid, incompressible flow theory; we have seen in Chapter 3 that such theory leads to a prediction of zero drag on a closed two-dimensional body—this is d’Alembert’s paradox. In reality, there is always a finite drag on any body immersed in a moving fluid. Our earlier predictions of zero drag are a result of the inadequacy of the theory rather than some fluke of nature. With the exception of induced drag and supersonic wave drag, which can be obtained from inviscid theory, the calculation of all other forms of drag must explicitly take into account the presence of viscosity, which has not been included in our previous inviscid analyses. The purpose of the remaining chapters in this book is to discuss the basic aspects of viscous flows, thus “rounding out” our overall presentation of the fundamentals of aerodynamics. In so doing, we address the predictions of aerodynamic drag and aerodynamic heating. To help put our
current discussion in perspective, return to the block diagram of flow categories given in Figure 1.31. All of our previous discussions have focused on blocks D, E, and F—inviscid, incompressible and compressible flows. Now, for the remaining six chapters, we move to the left branch in Figure 1.38, and deal with blocks С, E, and F—viscous, incompressible and compressible flows.
Our treatment of viscous flows will be intentionally brief—our purpose is to present enough of the fundamental concepts and equations to give you the flavor of viscous flows. A thorough presentation of viscous flow theory would double the size of this book (at the very least) and is clearly beyond our scope. A study of viscous flow is an essential part of any serious study of aerodynamics. Many books have been exclusively devoted to the presentation of viscous flows; References 42 and 43 are two good examples. You are encouraged to examine these references closely.
The road map for the present chapter is given in Figure 15.1. Our course is to first examine some qualitative aspects of viscous flows as shown on the left branch of Figure 15.1. Then we quantify some of these aspects as given on the right branch. In the process, we obtain the governing equations for a general viscous flow—in particular, the Navier-Stokes equations (the momentum equations) and the viscous flow energy equation. Finally, we examine a numerical solution to these equations.