Spoiler Opening Aerodynamics
Experimental or wind-tunnel studies of rapidly opening upper-wing surface spoilers show a momentary increase in lift, followed by a rapid decrease to a steady-state value that is lower than the initial value. At a wind speed of 39 feet per second, the initial increase is over in less than a half-second, and steady-state conditions appear in about 3 seconds (Yeung, Xu, and Gu, 1997). Results from the computational fluid dynamics method known as the discrete vortex method also predict the momentary increase in lift and associate it with a vortex shed from the spoiler upper edge in a direction that increases net airfoil circulation in the lifting direction. A subsequent shed vortex from the wing trailing edge in the opposite direction reduces circulation to the steady-state value. While suggestive, experimental flow visualization results do not exist that confirm this vortex model.
The Yeung, Xu, and Gu experiments show that providing small clearances between the spoiler lower edge and the wing upper surface reduces the momentary increase in lift following spoiler extension. This is consistent with a small shed vortex from the spoiler lower edge of opposite rotation to the vortex shed at the upper edge. A clearance between spoiler and wing surface of this type has also been used to reduce buffet.