The economics of high speed

In the discussion above and in Chapter 6 we discovered that the jet engine’s performance in terms of efficiency improves with speed, eventually becoming higher than that of the piston engine/propeller combination. As we increase the cruising speed, or Mach number, so we can employ power plants having a steadily improving efficiency.

An idea of the overall efficiency of the airframe/engine combination can be obtained by multiplying the airframe efficiency (best lift/drag ratio) by the engine efficiency. The result of this is shown in Fig. 7.9 and indicates that this overall efficiency can be kept surprisingly constant with speed. Thus for a given journey we can in principle construct an aircraft which will cruise at high speed and only use the same amount of fuel as its low speed competitor.

The above argument does not imply that the overall efficiency of an indi­vidual aircraft does not vary with speed. It merely means that we can design particular configurations intended for operation at widely differing speeds, with similar overall efficiencies.

The economical operation of a commercial aircraft is not just a matter of the amount of fuel used per passenger on a given flight. Aircraft cost a great deal and must complete as many flights per day as possible to pay their way. Crews have to be paid by the hour; and the airline which can provide the fastest service will generally attract the most passengers – other factors being equal. These factors clearly make the high speed aircraft a very attractive option.

Again we must beware of making too sweeping conclusions from such an argument. The design of a particular aircraft to fill a particular slot in the market is very complicated. Development costs, especially for supersonic and

THE ECONOMICS OF HIGH SPEED 203

Fig. 7.9 Overall aircraft efficiency

This figure represents best achievable figures. As airframe efficiency declines achievable propulsive efficiency rises to compensate

hypersonic configurations where little previous experience is available, are very high. We also have to remember that we have only considered the problem assuming we can cruise our aircraft at its optimum speed throughout the flight. The Concorde, which is an example of a supersonic transport, had to spend a substantial part of the flight cruising at subsonic speed to avoid creating too much disturbance on the ground with its shock waves. It may also have to spend some time queueing to land. These factors may significantly increase the fuel usage over the flight and a comparatively small change in fuel prices may nullify the other commercial advantages described above. In spite of these difficulties Concorde showed a good operating profit.

We also find certain ‘natural breaks’ in the scale of economical cruising speeds. At a flight Mach number in the region of unity we know that there is a rapid increase in the drag which can be achieved for a given lift. It is some time before the improved engine efficiency makes up for this. It is for this reason that there is a gap in the cruising speed of transport aircraft between the majority of aircraft which cruise at flight Mach numbers of approximately 0.8 and Concorde which cruises at a Mach number of 2.

Concorde represents another limit, that imposed by kinetic heating. Above this Mach number serious problems begin to be encountered with conventional light alloy materials and greatly increased development and construction costs must be accepted.

However, the more general argument for high speed, aimed at very long-term developments, is of interest in sorting out the practical from the pipedream. As Dietrich Kuchemann (1978), an aerodynamicist who has contributed much to the development of high speed aircraft, points out, the semi-orbital hypersonic airliner travelling to Australia from the UK in a couple of hours may well be a sensible long-term goal.