Unusual landing requirements
Thus far we have considered the landing manoeuvre for aircraft operating from conventional runways. Within this group we include special short take-off and landing (STOL) aircraft such as the C-17 (Fig. 10.20), since the techniques employed are essentially similar.
Sometimes aircraft are required to have a shorter landing run than is obtainable by conventional means, as for example in carrier landing. Although the carrier can help by sailing into the wind as fast as possible, the deck is short, and additional deceleration has to be provided by an arrester hook which
Fig. 13.12 The A380 landing Note the large number of wheels required because of the massive weight (Photo courtesy of R. Wilkinson) |
engages with a wire across the deck. The ultimate in landing performance is of course provided by the vertical take-off and landing (VTOL) Harrier (Fig. 7.12) or Osprey (Fig. 1.30).
At the other extreme the Space Shuttle (Fig. 8.19) commenced its approach without power at hypersonic speed. We looked at the high speed part of the landing manoeuvre in Chapter 8. The final approach, however, was very similar to those we have already dealt with, except that there was no longer the option to fly down the glide path under power. The lack of this ability means that it was not possible to be nearly so precise in achieving a particular touchdown point, with the result that a long runway was needed. Since the whole of the re-entry and landing manoeuvre was unpowered accurate computer control was needed right from the point of re-entry if the Shuttle was to end up in the right continent, let alone the right airfield.