Lift, Pitching Moment, and the Center of Pressure Location for Circular Arc Aerofoil

We know that the lift L, pitching moment about the leading edge of the aerofoil Mle and the pressure p acting on the aerofoil can be expressed as:

1 2

L = – pU 2cCL

Mie = 2 pU 2c2Cmic p = pUk.

Подпись: к = 2U Подпись: 2в sin в + а Подпись: 1 + cos в sin в

Now, substituting:

Подпись: p = 2pU2 Подпись: 2в sin в + а Подпись: 1 + cos в sin в

the pressure becomes:

Also,

x = — (1 — cos в).

Therefore, the lift becomes:

Подпись: 0 Подпись: 2pU2 Подпись: 2в sin в + а Подпись: 1 + cos в sin в Подпись: — sin в dв

L = I pdx

П _

Подпись: dв

Подпись: d0

= — pU2c 2 І а(1 + cos в) + 2вsin2 в

Подпись: L = 1 pU2c 2п(а + в) . Подпись: (6.23)

that is:

The lift coefficient is:

Подпись:L

2 pU 2c

Подпись: CL = 2n(a + в) Подпись: (6.23a)

This gives:

Thus the lift-curve slope is:

From the above relations for CL and dCL /da, it is evident that:

at a = 0, CL = 2пв at a = —в, CL = 0

and the lift-curve slope is independent of camber.

For a cambered aerofoil, we have:

Подпись: CL2л (a + в)

Подпись: + в).dCL

ЮГ(a

Подпись: dCL t , CL = —— (a — aL=0) da Подпись: (6.24)

For CL = 0, a = —в or —aL=0 = в. Thus:

The pitching moment is:

Mie = — pxdx

Подпись: = — 2pU2 J0 Подпись: 2в sin в + a Подпись: 1 + cos в sin в Подпись: c , . c - (1 — cos в) - sin в de 2 v ' 2

0

= —2pU2c2f (a + 2в).

Подпись: CMe =—П (a + 2 в) Подпись: (6.25)

Therefore, the pitching moment coefficient becomes:

In terms of CL, the CMle can be expressed as follows. By Equation (6.23a), we have the CL as:

Cl = 2n (a + в).

Подпись: CMie

The expression for CMle, in Equation (6.25), can be arranged as:

But CL = 2п (a + в), thus:

Подпись: CL І" + 1

Cm“ = —2

Подпись: CMie Подпись: с±_пв_ 4 2 Подпись: (6.26)

or

Подпись: CMU _ 1 пв C = 4 + 2CL Подпись: (6.27)

The center of pressure coefficient, kcp, becomes:

Thus, the effect of camber is to set back the center of pressure by an amount which decreases with increasing incidence or lift. At zero lift, the center of pressure is an infinite distance behind the aerofoil, which means that there is a moment on the aerofoil even when there is no resultant lift force.

Comparing this with Equation (6.17a) (CMle =— |a) for flat plate we see that the camber of circular arc decreases the moment about the leading edge by пв/2.

Example 6.3

(a) A flat plate is at an incidence of 2° in a flow; determine the center of pressure. (b) If a circular arc of 3% camber is in the flow at the same incidence, where will be center of pressure?

Solution

(a) Given, a = 2°.

For a flat plate, by Equation (6.16), the lift coefficient is:

CL = 2пa

= 2п x (2 x —— 2

V 180/

= 0.219.

By Equation (6.17):

Aliter:

Note that the kcp is also given by Equation (6.27), as:

Подпись: кПодпись: cp1 n в = 4 + 2CL 1 i n x 0.06 — 4 + 2 x 0.596 = 0.408.

This is the same as that given by dividing CMle with CL.