TRANSFORMATIONS OF AERODYNAMIC DERIVATIVES (BODY/STABILITY AXES)
Derivatives from stability to body axes are given as follows:
Cn„ = CLa cos a + CDa sin a + Cc Cc = CD cos a — CL sin a — CN
t-a l-‘ a L^a 1 v
Cma (Cm,)s
Cib = (Ch)) cos a – (C„b)) sin a
Cip = (Clp)s cos2 a + (C„r)s sin2 a – (C^ + Ci)s sin a cos a Cib = (СіД cos a – (c,*) sin a
Cir = (C^ )s cos2 a – (C^ sin2 a – (C„r – Ci^s sin a cos a
Cid = (Cid )) cos a – (Cn )s sin a
Cnb = (C„b)) cos a + (C^ ) sin a
C„r = (Cnr )s cos2 a + (Cip )s sin2 a + (Cnp + Ci^ sin a cos a Cnb = ДпД cos a + (Cib^) sin a
Cnp = (C^ cos2 a – (Cir)s sin2 a – (Cnr – C^ sin a cos a
Cn = (Cn)) cos a + (Ci5)) sin a
Derivatives from body to stability axes are given as
Cl„ = Cn„ cos a – Cca sin a – Cd Cd„ = Cca cos a + Cn„ sin a + Cl
(Cma)) = Cma
(Cib) ) = Cib cos a + Cnb sin a
(Cir)) = Cir cos2 a – Cnp sin2 a + (Cnr – Cip) sin a cos a ДД = Ci^j cos a + Cnbb sin a
(Cip)) = Cip cos2 a + Cnr sin2 a + (Cir + Cnp) sin a cos a (Ci5)) = Ci5 cos a + Cn5 sin a (CnJ) = Cnb cos a – Cib sin a
(Cnr)) = Cnr cos2 a + Cip sin2 a – (Cir – Cnp) sin a cos a (Cnb) = Cnbb cos a – Cib sin a
(CnJ) = Cnp cos2 a – Cir sin2 a + (Cnr – Cip) sin a cos a (Cn5)) = Cn5 cos a – Ci5 sin a