The pilot and pilot-vehicle interface
This aspect of the subject draws its conceptual and application boundaries from the engineering and psychological facets of the human factors discipline. We are concerned in this book with the piloting task and hence with only that function in the crew station; the crew have other, perhaps more important, mission-related duties, but the degree of spare capacity which the pilot has to share these will depend critically on his flying workload. The flying task can be visualized as a closed-loop feedback
Fig. 2.12 The pilot as sensor and motivator in the feedback loop |
system with the pilot as the key sensor and motivator (Fig. 2.12). The elements of Fig. 2.12 form this fourth reference point. The pilot will be well trained and highly adaptive (this is particularly true of helicopter pilots), and ultimately his or her skills and experience will determine how well a mission is performed. Pilots gather information visually from the outside world and instrument displays, from motion cues and tactile sensory organs. They continuously make judgements of the quality of their flight path management and apply any required corrections through their controllers. The pilot’s acceptance of any new function or new method of achieving an existing function that assists the piloting task is so important that it is vital that prototypes are evaluated with test pilots prior to delivery into service. This fairly obvious statement is emphasized at this point because of its profound impact on the flying qualities ‘process’, e. g., the development of new handling criteria, new helmet-mounted display formats or multi-axis sidesticks. Pilot-subjective opinion of quality, its measurement, interpretation and correlation with objective measures, underpins all substantiated data and hence needs to be central to all new developments. Here lies a small catch; most pilots learn to live with and love their aircraft and to compensate for deficiencies. They will almost certainly have invested some of their ego in their high level of skill and ability to perform well in difficult situations. Any developments that call for changes in the way they fly can be met by resistance. To a large extent, this reflects a natural caution and needs to be heeded; test pilots are trained to be critical and to challenge the engineer’s assumptions because ultimately they will have to work with the new developments.
Later in this book, in Chapter 6 and, more particularly, Chapter 7, the key role that test pilots have played in the development of flying qualities and flight control technology over the last 10 years will be addressed. In Chapter 8 the treatment of the topic of degraded handling qualities will expose some of the dangerous conditions pilots can experience. Lessons learnt through the author’s personal experience of working with test pilots will be covered.
Fig. 2.13 Response types required to achieve Level 1 handing qualities in different UCEs |