Numerical Model
The numerical model used herein is based on an existing algorithm developed for unsteady fbws in turbomachinery [Cizmas and Subramanya, 1997]. The Reynolds-averaged Navier-Stokes equations and the species equations are written in the strong conservation form. The fully implicit, finite-difference approximation is solved iteratively at each time level, using an approximate factorization method. Three Newton-Raphson sub-iterations are used to reduce the linearization and factorization errors at each time step. The convective terms are evaluated using a third-order accurate upwind-biased Roe scheme. The viscous terms are evaluated using second-order accurate central differences. The scheme is second-order accurate in time.
Grid Generation
The computational domain used to simulate the flow inside the turbine – combustor is reduced by taking into account flow periodicity. Two types of grids are used to discretize the flow field surrounding the rotating and stationary airfoils, as shown in Fig. 1. An O-grid is used to resolve the governing equations near the airfoil, where the viscous effects are important. An H-grid is used to discretize the governing equations away from the airfoil. The O-grid is generated using an elliptical method. The H-grid is algebraically generated. The O – and H-grids are overlaid. The fbw variables are communicated between the O – and H-grids through bilinear interpolation. The H-grids corresponding to consecutive rotor and stator airfoils are allowed to slip past each other to simulate the relative motion.